Gerotor Modeling with NX3.

1. Gerotor design parameters.

Following is the list of design parameters of a gerotor gear set. Despite the simplicity of relations between these parameters, this "quick reference" might be useful for the casual gerotor designer since the parameters (and their names) provided are rather "site specific" and s/he might be left wondering what the printout from some proprietary software means.

Inner Rotor Major Diameter (DIMAJ):

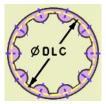
DIMAJ=DOMAJ-2.0*E

Inner Rotor Lobe Number (ZI):

ZI=ZO-1

Outer Rotor Minor Diameter (DOMIN):

DOMIN=DOMAJ-4.0*E


Outer Rotor Lobe Centers Diameter (DLC):

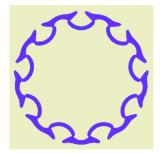
DLC=DOMAJ+DL-4.0*E

2. Outer Rotor Profile Modeling.

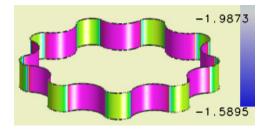
The outer rotor profile is made of circular arcs only. There are a few

different approaches to the design of the outer rotor lobe root, besides a simple edge blend, so local design guidelines should be consulted.

3. Inner Rotor Profile Modeling with Spline Control Points.

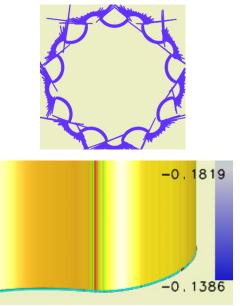

There may be a text file available with inner rotor profile spline control points. This can also be generated using GRPC061220:

(QI)(in^3/rev): 0.72		
2.3.1 Innor Datar Drafi	la Control Doint Coordi	nator
2.3.1. Inner Rotor Profil X	le Control Point Coordi Y	nates: Z
2.3.1. Inner Rotor Profil X 34.2000000000000000000	le Control Point Coordi Y 0.0000000000000000000000000000000000	nates: Z 0.0
X	Y	Ζ


Use these points to build a spline approximating inner rotor profile:

🎾 Spline Through Points 🛛 🗙				
Curve Type				
 Multiple Segments 				
Single Segment				
Curve Degree 3				
Closed Curve				
Assign Slopes				
Assign Curvatures				
Points from File				
OK Back Cancel				
$\langle \rangle$				

Use curve analysis to detect any abnormalities:



And smooth section geometry, naturally, creates smooth lobe surfaces:

(Note the value of minimum curvature radius).

For this example we used control points generated by gerotor pump calculator GRPC061220. The maximum number of meaningful digits for a mantissa format in NX3 is 15. GRPC061220's output provides at least 16 digits. Less precise control point coordinates are likely to create profile similar to the one shown below:

(Note the entirely meaningless minimum curvature radius).

Believe it or not, it is considered acceptable in automotive industry at least.

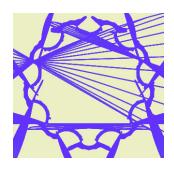
4. Inner Rotor Profile Modeling with NX3 "Expressions".

The inner rotor profile is defined by the following equations:

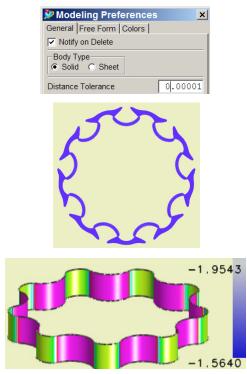
 $\begin{array}{l} x(t) = E^* \cos(ZO^*t) + r^* \cos(t) - \\ s^*(ZO^*E^* \cos(ZO^*t) + r^* \cos(t)) / g \\ y(t) = E^* \sin(ZO^*t) + r^* \sin(t) - \\ s^*(ZO^*E^* \sin(ZO^*t) + r^* \sin(t)) / g \end{array}$

where: r=0.5*DLC s=0.5*DL g=sqrt(a+b*cos(ZI*t)) a=ZO^2*E^2+r^2 b=2.0*ZO*E*r 0.0<=t<2.0*pi

Create expressions to represent the above equations:


🎾 Expres	ssions
Listed Exp	pressions 🔤 🔣 💹
Named	
Name 4	Formula
а	ZO^2*E^2+r^2
alfa	0
b	2.0*ZO*E*r
DL	15.5
DLC	DOMAJ+DL-4.0*E
DOMAJ	74.8
E	3.2
g	sqrt(a+b*cos(ZI*t))
r	0.5*DLC
s	0.5*DL
t	360.0*alfa
xt	E*cos(ZO*t)+r*cos(t)-s*(ZO*E*cos(ZO*t)+r*cos(t))/g
yt	E*sin(ZO*t)+r*sin(t)-s*(ZO*E*sin(ZO*t)+r*sin(t))/g
ZI	ZO-1
zo	10
•	

Create a "law curve":


🎾 Law Curve 🛛 🗙		
Constant		
Linear		
Cubic		
Values Along Spine-Linear		
Values Along Spine-Cubic		
By Equation		
By Law Curve		
OK Back Cancel		

Applying curve analysis, we see that the obtained spline cannot be used to generate a useful profile:

The easy fix for that is to set the "distance tolerance" to its minimum value (0.00001):

The (obvious) advantage to modeling gerotor profiles with "expressions" is parameterized section geometry.