Tyler Montbriand

200200370

CS330

Phase Two

General Design

Note – Some of this document consists of design information that was accidentally left out of Phase One.

Object-oriented vs Hierarchial

This project is not an object-oriented project, but a hierarchial one. C was chosen over C++ for several reasons:

C, being standardized since the early 80's, is more established and better supported cross-platform. The only system libraries this project is dependent on, stdio and malloc, are totally universal and unlikely to change.

C generates more efficient code. g++ and gcc, both compiling at maximum optimization, produced 42K and 36K executables respectively, whereas C++ compilers routinely generate executables hundreds of kilobytes in size, bloated with unused template libraries and virtual function tables.

C is more robust and simpler for debugging. C-style malloc() calls are guaranteed to return NULL if a memory allocation fails, whereas the new operator in C++ provides no guaranteed method to do this. Malloc, being a function rather than an operator, is also easily replaced by a more sophisticated function for debugging purposes.

C also lends itself better to data-flow diagrams, and flow of data is what a memory manager is all about.

Lastly, C is more universal; by coding in C one supports both C and C++. This project compiles equally well under both.

Just because it is being designed in a hierarchial fashion does not mean it is acceptable to design it hapazardly, however. C gives the programmer great power but great responsibility; There must be structure as to what goes where and what does what.

Design Standards

Though this project does not use object-oriented design, it is still important to design in a sensible way. Firstly, the segments, processes, and the memory manager containing them have been organized into dynamically allocated structures. These structures are passed to and returned from functions which modify them. This model avoids most use of global variables; in fact, the ONLY global variables used are

string tables.

Flexibility

Much of the behaviour of the program has been moved out of compile time and link time, and into run-time. The parser, for example, uses string matching with tables of strings to determine it's behaviour, and the string tables are passed to the functions at run-time. The exact same parser code is easily used for

both command files and .lod files, even though their content is radically different; different string tables define the different behavior of the parser.

Error Checking

A very high level of error control is used; all values passed between functions are are bounds and errorchecked. An enumerated type and a table of strings is used to provide error messages for command errors.

Three-layer Code

Lastly, the code has been stratified into three layers: External, Command, and Base layers. The External layer is the outermost layer. It can be called directly from external functions, like main(). Only three functions are available, TMM_Create, TMM_Free, and TMM_ParseFile. All others are restricted. Every function call except TMM_Create takes a ToyMM pointer as it's first parameter.

The Command layer is designed to resemble the syntax of the command files as much as possible; for every command, there is a function. The "ReallocateHeap" command directly triggers a TMM_ReallocateHeap call, a STORE call can either trigger a TMM_StoreInteger or TMM_StoreString call, and so forth. Every function in this layer takes a ToyMM structure and a process ID as their first two parameters, and returns an error value.

The Base layer is the very deepest and lowest-level of the code, as well as the most diverse. This layer of code comprises two modules - parser and memory manager. ToyMem functions in this layer directly read and modify the contents of the ToyMM structure; managing linked lists of memory segments, and so forth. The parser functions convert lines of text into arrays of recognized token types.

L1 functions can only call L2 functions, L2 can only call L3 functions, and L3 uses only it's own helper functions and system calls. This allows us to iosolate aspects of program behavior to specific layers and functions.

Phase Two Design

To implement heap management, 3 extra members needed to be added to the

process structure: freeheap, usedheap, and ptr.

 typedef struct Process

 {

 int ID;

 struct SegList *segments; /* Memory segments */

 struct SegList *freeheap; /* Head of unused portions of heap */

 struct SegList *usedheap; /* Used portions of heap */

 struct SegList *ptr; /* Pointer to previous spot in free list */

 } Process;

freeheap is a logically circularly linked list of free space holes. When there is no free space in the heap, it is set to NULL.

usedheap points to a linked list of used memory blocks. These are used to keep track of what addresses should be accepted for free and realloc commands, and to calculate what percentage of space has been used. When no memory has been allocated from the heap, this member is set to NULL.

ptr is a pointer to the current position in the list of free space holes. The list itself is not circular, but NULL terminated; a true circularly-linked list was found to be difficult to implement and quite error-prone. Instead, it is logically circular; by using the function TMM_CircularNext(), we get circular behavior with a linear list. When it hits the end, it automatically rewinds to the beginning of the list without us

needing to worry about it.

Another reason for using a logically circular list, is to avoid problems when removing a space hole already pointed to by ptr. By wrapping the circular behaviour around functions instead of accessing the nodes directly, we can simply call the function to delete a certain space hole without worrying whether process->ptr will suddenly become invalid.

The following functions are interfaced directly with the commands "AllocateHeap", "FreeHeap", "PrintHeap" and "ReallocateHeap", and are called by TMM_ParseFile().

/* Attempts to allocate a memory block of 'size' length in the

 heap of the specified process of the passed memory manager. */

ErrMessage_t TMM_AllocateHeap(ToyMM *tm, int process, int size);

/* Attempts to reallocate an allocated memory block in the

 specified process of the passed memory manager to 'size' length.

 The requested memory block is specified by the starting address,

 'addr'. */

ErrMessage_t TMM_ReallocateHeap(ToyMM *tm, int process, int addr,

 int size);

/* Attempts to free an allocated memory block of the specified

 process in the memory manager. The specific memory block

 is specified by it's starting address, 'addr'. */

ErrMessage_t TMM_FreeHeap(ToyMM *tm, int process, int addr);

/* Prints the heap's free list and used list of the specified

 process in the passed memory manager, as well as the

 ratio of free to total mem and the percentage of memory free

 (rounded up). */

ErrMessage_t TMM_PrintHeap(ToyMM *tm, int process);

And these glue functions are used by the above functions:

/* Inserts a space hole into the process' free list */

SegList *TMM_InsertSpaceHole(Process *proc, SegList *hole);

/* Like ptr=ptr->next, except rewinds to head when it hits the end */

SegList *TMM_CircularNext(Process *proc);

/* Deletes a space hole from the list, ensuring proc->ptr is still valid */

SegList *TMM_DeleteSpaceHole(Process *proc, SegList *hole);

/* Attempts to find a block of 'size' length in the process' free list */

SegList *TMM_FindInFreeList(Process *proc, int size);

/* Attempts to find a segment beginning at 'address' in the list */

SegList *TMM_FindAddressInList(SegList *list, int address);

/* Merges segment with segment below, ensuring proc->ptr is still valid */

void TMM_MergeAt(Process *proc, SegList *list);

/* Prints a titled and linewrapped list of segments */

int PrintSegList(SegList *list, const char *title, char *prefix);

/* Prints the linked list proc->freeheap in properly formatted fashion,

 placing the * in the correct place */

int PrintFreeHeap(Process *proc);

